Available online at www.ijpab.com

ISSN: 2320 - 7051

Int. J. Pure App. Biosci. 1 (1): 28-32 (2013)

International Journal of Pure & Applied Bioscience

Antagonistic Activity of Lactic Acid Bacteria from Dairy Products

Sakshi Datta², Krishnendra S. Nama¹*, Priyanka Paras¹, Priyanka Sharma³, Neelofar Shaikh¹, Jitendra Nagar¹

¹Microbiology Division, Vital Biotech Research Institute, Kota
²Maharishi Dayanand P.G. College, Sriganganagar
³ Lachoo Memorial College of Science & Technology, Jodhpur
*Corresponding Author Email: namasahib@gmail.com

ABSTRACT

This research highlights the achievement made for the antagonistic activity of Lactic acid bacteria (LAB) against E. coli, Klebsiella, Pseudomonas, Streptococcus, Proteus. For this purpose Lactic acid bacteria were isolated from different fermented dairy food and identified as Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus casei and Lactobacillus brevis.

Maximum zone of inhibition was observed in pseudomonas (25mm) by using L. plantarum. Least results were found in Proteus (5mm) and Streptococcus(5mm) by using L. plantarum and L. fermentum Respectively.

Key words: E. coli, Lactic acid bacteria, Klebsiella, Streptococcus, Proteus, Antagonistic effect.

INTRODUCTION

Lactic acid bacteria (LAB) are the most prominent non-pathogenic bacteria that play a vital role in our everyday life, from fermentation, preservation, and production of wholesome foods, and vitamins to prevention of certain diseases and cancer due to their antimicrobial action. Lactic acid fermentation is generally inexpensive often requiring little or no heat in the process, making them fuel-efficient as well¹. These microorganisms do one of the prominent bacteria inhabit the gastrointestinal tract, and the importance of these non-pathogenic bacteria has recently been more noticed². A lot of Lactobacilli have been noted to have nutritional benefits, improved lactose utilization, have anti-cholesterol, anti carcinogenic activities, and protection against other diseases,^{3,4}.

Lactic acid bacteria are a group of bacteria that can preserve dairy foods by producing a number of organic compounds that are antagonistic to other microorganisms^{5,6}. Much research has focussed on utilizing bacteriocins as novel food preservatives, but there is also interest in using them for the control of bacterial diseases in human and animals.

Apart from the above-mentioned medicinal importance of Lactobacilli, it also helps in the control of intestinal pathogens. For instances L. acidophilus has been shown to be effective in the treatment of different type of diarrhoea in human. Lactic acid bacteria exert strong antagonistic activity against many microorganisms including food spoilage organisms and pathogens. In addition, some strains may

ISSN: 2320 - 7051

contribute to the preservation of fermented foods by producing bacteriocins. Bacteriocins are produced by some strains of LAB; they are antimicrobial peptides with activity against strains closely related to the producer microorganism. Some bacteriocins are also active against Gram-positive food-borne pathogens such as Listeria monocytogenes, Staphylococcus aureus, Bacillus subtilis and spores of Clostridium perfringens. For this reason, they have received much attention for use as natural or so-called 'biopreservatives' in food in recent years^{7,8}.

However, studies relating to the antibacterial properties of these organisms have been limited and not fully exploited for use. The most important aspects in the study is antimicrobials characterization. Therefore, the aim of this work was to isolate the different strains of Lactobacillus species, from various food sources like cheese, butter, curd, paneer, milk and to determine their antimicrobial activity.

MATERIAL AND METHODS

Collection of lactic acid bacteria from fermented foods:

A 25 g sample of each fermented dairy food products like cheese, butter, curd, paneer, milk were taken aseptically and transferred to sterile plastic bags and then homogenized in 225 ml of sterile buffered peptone water. Five 10 fold dilutions of the homogenates were then prepared and these were inoculated on plates of MRS agar, acidified with glacial acetic acid to pH 5.7 and incubated anaerobically for 48 hours at 320C colonies were tested for Gram staining and were identified using biochemical and sugar fermentation pattern.

In vitro Inhibition Test

The antimicrobial activity of the isolated LAB (cell free filtrate) against (Escherichia coli, Pseudomonas aerouginosa, Klebsiella pneumoniae, Proteus sp, Streptococcus pneumoniae and Staphylococcus aureus), that obtained from IMTECH Chandigragh was performed by the well diffusion assay. The pathogenic test bacteria were incubated in Nutrient broth at appropriate temperature for 24 hrs. Petri dishes containing 20 ml of Muller Hinton agar were prepared previously and inoculated with 0.1 ml of 24 hrs. broth culture of pathogenic bacteria. Once solidified the dishes were stored for 2 hrs. in a refrigerator. Four wells were made and filled using different concentration like 25 μl , 50 μl , 75 μl , 100 μl of cell-free filtrate . Incubate Petri dishes at 37°C for 24 hrs. Then the diameter of the inhibition zone was measured with calipers in mm. The antimicrobial activity was determined by measuring the clear zone around the wells

Determination of antibiotic resistance of the isolates

In the study, the 7 antibiotic discs were used to determine antibiotic resistance of lactobacilli strains. These antibiotic discs were Rifampicin, Ketoconazole, Novobiocin, Fluconazole, Gentamycin, Amphotericin, and Chloramphenicol. The susceptibility tests for each isolates were performed using disc diffusion method⁹. The discs were placed on the solidified agar surface. The plates were incubated aerobically for 24 hours at 37°C. The resistances were determined according to the zone formation.

RESULTS AND DISCUSSION

As the results indicate, the diameters of the inhibition zones were varied it ranged between 5 to 25 mm. (Table 2) This revealed that the LAB inhibited all the pathogenic bacteria tested according to Schillinger¹⁰. whose mentioned that inhibition was scored positive if the width of the clear zone around the colonies of the producer strain was 0.5 mm or larger. Similar study was carried out in Morocco by Kalalou whose studied the activity of LAB on some gram positive and negative pathogenic bacteria such as *E.coli, Pseudomonas aeroginosa, Klebsiella pneumonia, Staphylococcus aureus* and the inhibition zones were in the range of 1.4 to 2.8cm¹¹.

ISSN: 2320 - 7051

Lactic acid bacteria were isolated from different dairy food and characterized. The pathogens like *E.coli*, *Klebsiella*, *S.aureus*, *Proteus*, *Streptococcus*, *Pseudomonas* varies in their sensitivity to different antibiotics. Isolates from this part of the world have been reported to be more resistant to antibiotics than those from other parts of the world. This widespread resistance could be attributed to excessive or indiscriminate use of antibiotics in this part of the world or due to chromosomal resistance.

The metabolites of selected LAB have antagonistic activities against all organisms used in this work. The largest zone of inhibition was produced by *L.plantarum* (6mm) against *S.aureus*. The isolated LAB produced antimicrobial compounds to varying degree, the increase in the production of lactic acid with time have been attributed to lowered pH which permit the growth of LAB. The antimicrobial effect of lactic acid is due to undissociated form of acid which penetrate the membrane and liberate hydrogen ion in the neutral cytoplasm thus leading to inhibition of vital cell functions. The inhibitory effect of hydrogen peroxide produced by LAB has also been reported. The inhibition of *S.aureus* and *Pseudomonas* by hydrogen peroxide produced by certain LAB strains which contribute to their inhibitory activity against other microorganism.

Earlier, Lactobacillus bacteriocins are found within each of the four major classes of antimicrobial proteins produced by LAB and the lactobacilli produce many different bacteriocin activity¹². Among the lactobacilli, there has been great interest in *L.plantarum*, due to the potential applications of the microorganisms as a starter bacterium for a variety of fermented foods. The bacteriocin produced from *L.plantarum* have been found to be inhibitory towards closely related LAB, particularly the mesophilic and thermophilic lactobacilli¹³. It has been demonstrated from this study that LAB has a high potential for the treatment of UTI with the use of LAB from indigenous fermented dairy foods as probiotic organisms. The bacteriocin produced by *L.plantarum* and *L.fermentum* exhibited a wide spectrum of inhibition compared to the bacteriocin produced by *L.brevis*. The potential of these bacteriocins to inhibit the food pathogens such as *E.coli*, *Klebsiella*, *S.aureus*, *Proteus*, *Streptococcus*, *Pseudomonas spp* makes it of crucial interest especially in processed foods where there is risk of food pathogens. Due to the phenomenon of immunity the bacteriocin from the produced organism were resistant to the organism producing it.

Table:1 LAB species isolated from different food samples

S. No	Fermented food sample	LAB isolated		
1	Cheese	L.fermentum, L.casei		
		L.plantarum, L.brevis		
2	Butter	L.casei, L.fermentum		
		L.plantarum, L.brevis		
3	Paneer	L.fermentum, L.casei		
		L.fermentum, L.plantarum		
4	Milk	L.casei, L.plantarum		
		L.fermentum, L.brevis		
5	Curd	L.fermentum, L.plantarum		
		L.casei, L.brevis		

Table: 2 Antagonistic activity of selected LAB against UTI pathogens (Zone of inhibition in 100 µl)

Pathogen	L. fermentum	L. plantarum	L. brevis	L. casei
E.coli	10mm	6mm	14mm	8mm
Klebsiella	10mm	7mm	7mm	14mm
S.aureus	13mm	6mm	10mm	9mm
Proteus	12mm	5mm	15mm	7mm
Pseudomonas	15mm	25mm	14mm	8mm
Streptococcus	5mm	20mm	12mm	7mm

CONCLUSION

Lactic acid bacteria are very important bacteria which is helpful in our daily life. In the present study different strains of Lactobacillus species, from various food sources like cheese, butter, curd, paneer, milk were isolated and to determine their antagonistic activity. It is an important approach to identify the antagonistic activity against various microbes. Zone of inhibition was developed by lactobacillus species against various micro organisms such as *E.coli*, *Klebsiella*, *S.aureus*, *Proteus*, *Streptococcus*, *Pseudomonas*. Maximum zone of inhibition was observed in *pseudomonas* (25mm). Least results were found in *Proteus* (5mm) and *Streptococcus*(5mm).

Acknowledgement

We are grateful to Microbiology Division, Vital Biotech Research Institute, Kota for providing laboratory facilities and also thankful to Jitendra Mehta of Vital Biotech for sincere efforts in writing this research paper. We are also grateful to Ms. Sakshi Datta,, Ms. Priyanka Paras, Dr. Krishnendra S. Nama, Ms. Priyanka Sharma, Ms. Neelofar Shaikh and Mr. Jitendra Nagar for their continuous team work. We would also like to thank staff members of Vital Biotech Research Institute for encouragement and we would like to thank the reviewers of this paper for their excellent comments.

REFERENCE

- 1. Keith HS, Lactic acid fermentations; Fermented foods Critical Reviews In Food Science and Nutrition, 5: 44-48(1991)
- 2. Englund M. Lactobacillus a review of the beneficial effects to human health. Forslarskolanii, Lund. 1-16 (1992)
- 3. Reddy GC, Shahani KM, Friend BA and Chandan RC, J. Dairy Products, 8: 15 19 (1984)
- 4. Abdel–Barn ND, Harris and RL Rill, *J. Food Sci.*, **52:** 411 415 (1987)
- 5. Lindgren SW and Dobrogosz WJ. FEMS Microbiol. Rev. 87: 149-164 (1990)
- 6. Brink ten B, Minekns M, Vander Vossen, JMBM, Leer, RJ, and Huis in't Veld, JHJ, *J. Appl. Bacteriol.*, **77:** 140 148 (1994)
- 7. Savadogo A, Ouattara Cheik AT, Bassole Imael HN, Traore SA, Afr. J. Biotechnol., 5(9): 678-683 (2006)
- 8. Savadogo A, Ouattara Cheik AT, Bassole Imael HN, Traore SA. Pak. J. Nutr., 3(3): 174-179 (2004)
- 9. Bauer AW, Kirby WM, Sherris JC, Turck M, Am J Clin Pathol., 45(4): 493–496 (1966)
- 10. Schillinger U, Lucke FK, Appl. Environ. Microbiol., 55: 1901-1906 (1989)
- 11. Kalalou I, Faid M and Ahami AT. Delbrueckii, 7: 1-6 (2004)

- 12. Alpay Karaoglu S, Aydin F, Kilic, SS and Kilic AO, *Turkish Journal of Medical Science*, **33:** 7-13 (2003)
- 13. McKay LL, Baldwin KA, FEMS. Microbiol.Rev. 87: 3-14 (1990)
- 14. AOAC (Association of Official Analytical Chemist) *Official Methods of Analysis, Association of Official Analytical Chemists.* 15th Ed. Gaithersburg, USA: AOAC Press; (1990)
- 15. Benkerroum N, Ghouati Y, Ghalfi H, Biotechnol., 4: 481-488 (2007)
- 16. Cleveland J, Montville TJ, Nes IF and Chikindas ML, Int. J. Food Microbiol., 71: 1-20 (2001)
- 17. Diez-Gonzalez F, Curr Issues Intestinal Microbiol, 8:15–24 (2007)
- 18. Mojgani N and Ashtiani MP. J Appl Sciences, 6: 2629-2634 (2006)
- 19. Oyetayo VO, Adetuyi FC and Akinyosoye FA, Afr. J. Biotech., 2: 448-452 (2003)
- 20. Perdigon GS, Alvaroz and A Pesce de Rurz Holgado, J. Dairy Res., **58** (4): 485-496 (1991)